prattrich

Space Program As Important As Any Poverty Programs

October 9, 2014
Leave a Comment

Destination: Mars

The problems of poverty and disease may take care of themselves sooner or later, according to SpaceX founder Elon Musk.  But that will be because of nature’s “carelessly terrifying violence”, not for anything we do.

He says we have all our eggs in one basket–we live on only one planet and that’s not a good thing.  It’s a terrible risk management strategy. That makes space exploration as important as any poverty program because it will get some of us off Earth where we can survive if anything happens to the home planet.

Nature can be extremely violent.  We haven’t experienced its full violence yet because we’ve only existed for a very short time in cosmic history.  In that sense, an extinction level event would solve all our problems, but there wouldn’t be any of us left to celebrate.

Musk thinks there may be a whole lot of dead, one planet civilizations in our galaxy alone which ought to be teeming with life. He offers this as one explanation for why we haven’t discovered any intelligent life so far.  Violent cosmic events such as gamma ray bursts, asteroid strikes, extreme volcanism, or species suicide events may keep civilizations from developing much beyond the stages we are at now.

Musk says he doesn’t intend to stop with just developing vehicles to get people to the international space station.   His intention is to found a colony on Mars.  His Mars One plan will send the first humans to Mars.  Over 200,000 people have applied for the one way tickets so far.

Before we can live even semi-comfortable lives on other planets or moons, more advances in science and technology will need to take place.  We will need the ability  to terra-form Mars, to hollow out asteroids, to protect space farers from dangerous radiation, and to provide unlimited 100 per cent reliable power supplies for electricity, heating, and oxygenating whatever environment we choose to live in.  There is water on Mars, which can be used for providing  fuel as well as drinking, but it may be difficult to get at in any easy abundance.

Advertisements

Music Parody illuminates NASA Accomplishments

December 20, 2012
1 Comment

Nothing makes it more obvious that we need to keep supporting NASA than a record of its past accomplishments.  No government agency (exept possibly social security) has been more effective at doing good for people.  At present NASA is at sea, uncertain of what ports it should be sailing toward.  It needs leadership from the people who supply its funding, and that leadership should be considering what’s the long-term best for this country and the rest of humanity.

Being given a vague mandate to develop more heavy lift rockets is not enough.  Heavy lift for what?  To where?  With what cargo?  The President should be setting a vision for future development, not just giving vague pronouncements not backed up by adequate funding.  Write to the White House.  Tell President Obama to create a vision for NASA equivalent to or better that John F. Kennedy’s vision that led to astronauts exploring  the moon.   We and our children and their children will reap the benefits.  Meeanwhile enjoy the video below.

http://www.youtube.com/watch?v=2Sar5WT76kE


Universe is Stranger Than We Can Imagine

October 24, 2012
2 Comments

We are part of a reality that is stranger than we can imagine.  In it are incredible extremes of heat, cold, velocity, gravitational attraction, mass, density, sound, size, and time, all measurable through the wonders of scientific research.

First, temperatures inside the Boomerang Nebula, a region of leftover star remnants, get down to -458 degrees F. just a shade above the coldest temperature possible or 459.67 degrees F. (otherwise known as absolute zero).  At the other extreme, temperatures in a supernova explosion can reach 9 billion degrees F., hot enough to fry eggs on a sidewalk–and also the sidewalk, and anything the sidewalk is attached to.

The earth revolves around the sun at a velocity of 66,000 mph.  Mercury, the fastest planet, travels through the solar system at 105,000 mph.  At that speed you could circle the earth more than 4 times in an hour.  The speed at which particles of light (photons) travel is 670,616,629.13 mph.  That speed would enable you to circle the earth over 7 times in ONE SECOND! But you’ll never go faster! You would probably be too dizzy.

Gravitational attraction determines weight and, as you probably know, weight varies with the mass of the object you are near. If you can high jump 3 feet on Earth, then on Mars you would be able to soar 9 feet into the air and on the moon, 18 feet, assuming you’re not wearing anything to weight you down–like a space suit, and if you’re not, you wouldn’t be jumping anywhere–you’d be flopping around like a fish.   But if you’re inside a dome with plenty of air…

On or near Earth, gravity will cause you to accelerate 22 mph for every second that you fall.  On the sun, you would accelerate 615 mph for every second you are falling.  Near the surface of a neutron star, your acceleration would become 3 TRILLION mph greater for every second that you fell (of course, you would run afoul of the cosmic speed limit here which says that nothing can go faster than the speed of light. Check the numbers above.).

The earth masses (weighs) 6.6 billion trillion tons.  The sun weighs 2200 trillion trillion tons.  The entire observable universe weighs in at about 400 billion trillion times the mass of our 2200 trillion trillion ton sun.  These numbers are, of course, impossible for our tiny little minds to comprehend.  But it is a tribute to these same minds that we can figure out these statistics at all.

Iron has a density of 0.28 ounces per cubic centimeter.  The earth’s core has a density of about a half ounce per cublic centimeter.  The sun’s core weighs in at a full 5 ounces per c.c.  A neutron star masses about 375 million TONS per cubic centimeter.  How can this be, you say?  Well, it seems that individual atoms are mostly empty space and when gravity compresses the atoms in a neutron star so severely that all of the space is gone and electrons and protons have squished themselves together to form nothing but neutrons and even the neutrons are flattened into elongated shapes so close together they can’t even breathe, you get a lot of mass, and the name–neutron star.

So what about size?  Well, out there, we have asteroids as small as two or three feet in diameter, the sun which is 865,000 miles in diameter, and the giant red star Betelgeuse up at the tip of Orion’s sword in the night sky.  It balloons out to about a billion miles in diameter.  And finally a gigantic collection of galaxies called the Sloan Great Wall, which measures 1.4 billion light years in length.

When it comes to time, radiometric dating has proven that the earth was formed about 4.6 billion years ago, while the universe erupted from its Big Bang beginnings approximately 13.7 billion years in the past. On the other hand, I was born 70 years ago.  Seems like only yesterday.

Oh, and the galaxy cluster Abell 426 makes a sound in F sharp, 35 octaves below middle C at 170 decibels in case you needed to know.

Kind of makes your head swim, doesn’t it?

–Much of this information was taken from the book  Extreme Cosmos by Bryan Gaensler, an internationally recognized astronomer, NASA Hubble fellow, and Harvard Professor.  Much more is available in this book.  Statistics regarding my age come courtesy of my birth certificate.

 


New Mayan Calendars Found–Earth is Safe

May 11, 2012
Leave a Comment

You can breathe easier now.  Archaeologists have found Mayan calendars on the walls of a small recently excavated building that measure time thousands of years into the future and past.  So the world will not end on Dec. 21 this year. No scientific evidence ever existed that it would anyway.  Just because a calendar dating system ends is no reason to believe the world will–or that primitive peoples somehow were privy to future events. 

Some day, of course, things will come to an end, either for our civilization, humans in general, or the entire planet Earth.  And there are myriad ways that each could happen.  One of the reasons for going further into space should be to reduce the possibility that the first two scenarios could happen.  The earth has been hit by large asteroids and/or comets in the past and there is no guarantee that it won’t happen in the future.  With enough warning, we can move asteroids out of our way.  Comets could be a bigger problem since we generally don’t detect them in time to gravitationally affect their orbits.  Then, nuclear devices might have to be used to break them up.  That means advanced delivery systems as well as knowledge of cometary makeup.  Right now, no large objects have been detected that are certain of smashing into Earth.  But tomorrow or next year could change that.  It will take years to develop effective defenses against incoming celestial objects.  We shouldn’t wait too long to start.